Background changes delay information represented in macaque V1 neurons.

نویسندگان

  • Xin Huang
  • Michael A Paradiso
چکیده

In natural behavioral situations, saccadic eye movements not only introduce new stimuli into V1 receptive fields, they also cause changes in the background. We recorded in awake macaque V1 using a fixation paradigm and compared evoked activity to small stimuli when the background was either static or changing as with a saccade. When a stimulus was shown on a static background, as in most previous experiments, the initial response was orientation selective and contrast was inversely correlated with response latency. When a stimulus was introduced with a background change, V1 neurons showed a qualitatively different temporal response pattern in which information about stimulus orientation and contrast was delayed. The delay in the representation of visual information was found with three different types of background change-luminance increment, luminance decrement, and a pattern change with fixed mean luminance. We also found that with a background change, V1 off responses were suppressed and had a shorter time course compared with the static-background situation. Our results suggest that the distribution of temporal changes across the visual field plays a fundamental role in determining V1 responses. In the static-background condition, temporal change in the visual input occurs only in a small portion of the visual field. In the changing-background condition, and presumably in natural vision, temporal changes are widely distributed. Thus a delayed representation of visual information may be more representative of natural visual situations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Muscarinic acetylcholine receptors are expressed by most parvalbumin-immunoreactive neurons in area MT of the macaque

BACKGROUND In the mammalian neocortex, cells that express parvalbumin (PV neurons) comprise a dominant class of inhibitory neuron that substantially overlaps with the fast/narrow-spiking physiological phenotype. Attention has pronounced effects on narrow-spiking neurons in the extrastriate cortex of macaques, and more consistently so than on their broad-spiking neighbors. Cortical neuromodulati...

متن کامل

Orientation-Cue Invariant Population Responses to Contrast-Modulated and Phase-Reversed Contour Stimuli in Macaque V1 and V2

Visual scenes can be readily decomposed into a variety of oriented components, the processing of which is vital for object segregation and recognition. In primate V1 and V2, most neurons have small spatio-temporal receptive fields responding selectively to oriented luminance contours (first order), while only a subgroup of neurons signal non-luminance defined contours (second order). So how is ...

متن کامل

Neural representation of the luminance and brightness of a uniform surface in the macaque primary visual cortex.

The perceived brightness of a surface is determined not only by the luminance of the surface (local information), but also by the luminance of its surround (global information). To better understand the neural representation of surface brightness, we investigated the effects of local and global luminance on the activity of neurons in the primary visual cortex (V1) of awake macaque monkeys. Sing...

متن کامل

Representation of Color Stimuli in Awake Macaque Primary Visual Cortex

We investigated the responses of single neurons in primary visual cortex (area V1) of awake monkeys to chromatic stimuli. Chromatic tuning properties, determined for homogeneous color patches presented on a neutral gray background, varied strongly between cells. The continuum of preferred chromaticities and tuning widths indicated a distributed representation of color signals in V1. When stimul...

متن کامل

What delay fields tell us about striate cortex.

It is well known that electrical activation of striate cortex (area V1) can disrupt visual behavior. Based on this knowledge, we discovered that electrical microstimulation of V1 in macaque monkeys delays saccadic eye movements when made to visual targets located in the receptive field of the stimulated neurons. This review discusses the following issues. First, the parameters that affect the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 94 6  شماره 

صفحات  -

تاریخ انتشار 2005